

SSHEAR SOILS, STRUCTURES & HYDRAULICS Expertise and Applied Research

Journée publique de restitution Mercredi 11 Septembre 2019, Marne-la-Vallée

Modélisation numérique diphasique pour le transport sédimentaire et les affouillements

Damien Pham Van Bang, *Cerema-LHSV, INRS* Wei Zhang, Xin Bai, Qinjun Fu, Jonathan Brans, *Cerema-LHSV* Kim Dan Nguyen, *Cerema-LHSV*

D. Pham Van Bang – Modélisation numérique diphasique – Journée de restitution ANR SSHEAR, 11/09

Dargahi, JHE, 1990

2

Développements numériques dédiés

Reference	Numerical model	Turbulence model	Sand slide model	Water-sediment interface	Reynolds number	Physical phenomenon
Roulund (2005)	Structured finite volume method (FVM)	RANS (k-ω)	Updated particle velocity	Multigrid mesh	4.6×10 ⁴	Scour hole evolution (Live bed erosion)
Kirkil (2008, 2010,2015)	Structured finite volume method (FVM)	LES	Fixed bed (no)	Fixed bed (no)	1.6×10 ⁴	HV system No scour evolution
Khosronejad (2012)	Unstructured finite volume method (UFVM)	RANS (k-ω)	Mass- conservating	FSI-CURVIB	4.95×10 ⁴	Scour hole evolution (Live bed erosion)
Link et al. (2012)	Structured finite volume method (FVM)	DES	No	Lagrangian model	3.15×10 ⁴	Scour hole evolution (Clear-water erosion)
Baykal et al. (2014,2017)	Structured finite volume method (FVM)	RANS (k-ω)	Updated particle velocity	Multigrid mesh	1.7×10 ⁴	Scour hole evolution (Clear-water erosion)
Zhou (2017)	Structured finite volume method (FVM)	RANS (k-ω)	Mass- conservating	Dynamic mesh deformation	4.6×10 ⁴	Scour hole evolution (Live bed erosion)
Nagel (2018)	Structured finite volume method (FVM)	RANS (k-ω)	No	Two-phase model	4.6×10 ⁴	Scour hole evolution (Live bed erosion)
ANR SSHEAR (2019)	Unstructured finite volume method (UFVM)	LES	Mass- conservating	Sigma transform	4.6×10 ⁴	HV system Scour evolution (Live bed erosion)

Plan de l'exposé

- 1. Modèle NSMP-3D
 - 3D, Finite volume, maillage non structuré
 - Surface libre
 - 2^{ème} ordre en espace et en temps
 - Massivement parallèle
- 2. Validation du modèle
 - 3D non-hydrostatique, surface libre
 - Vorticité, séparation, sillage
 - Jets descendant et ascendant
 - Turbulence

• 3. Résultats sur les affouillements

	Surface rigide	Surface libre
Fond rigide	Cas 1	Cas 2
Fond érodable	Cas 3	Cas 4

1. Modèle NSMP- 3D

1. Modèle 'Navier-Stokes Multi-Phase 3D'

- Schéma volumes finis, non-structuré, collocatif
 - Volume à 5 faces (base triangulaire)
 - Géométrie conforme sur des cas de rivières, estuaires et zones côtières
- Massivement parallèle
 - Décomposition de domaines
 - Algorithme Message Passing interface (MPI)
 - Algorithme CUDA-GPU
- Transformation sigma
 - Surface libre

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u}\mathbf{u}) = -\frac{1}{\rho}\nabla p + \nabla \cdot \left(\frac{\mu}{\rho}\nabla \mathbf{u}\right) + f_e$$

- Schéma de discrétisation
 - Méthode de projection
 - Méthode d'interpolation du mouvement
- Solveur de pression (problème non-hydrostatique)
 - BiCGSTAB
 - SOR amélioré
- Schéma temporel
 - Adams-Bashforth (2nd order, semi-implicit)
 - Cranck-Nicholson (2nd order)
 - Euler explicite et implicite (1st order)
- Conditions limites
 - Glissement ou adhérence
 - Périodique
 - Convective (entrante, sortante)
 - Absorbante

2. Validation du modèle

- 2^{ème} ordre en espace et en temps
 - Taylor-Green (decaying) Vortex
 - Solveur de pression

• Turbulence

- Simulation numérique directe (DNS)
- Simulation aux grandes échelles (LES)

Re_{τ} = 180 Δz^{+}_{max} = 4.2 and Δz^{+}_{min} = 1.4 Re_{τ} = 395 Δz^{+}_{max} = 18.92 and Δz^{+}_{min} = 0.86

D. Pham Van Bang – Modélisation numérique diphasique – Journée de restitution ANR SSHEAR, 11/09/2

• Séparation et ré-attachement

Uh Zapata et al., C&F, 2018

• Sillage (allée de Von Karman)

3. Résultats sur les affouillements

	Surface rigide	Surface libre
Fond rigide	Cas 1	Cas 2
Fond érodable	Cas 3	Cas 4

Cas 1: fond et surface rigide

 $(\text{Re}_{\text{D}} \text{ from } 200 \text{ up to } 1000)$

Ecoulement tridimensionnel
 Adhérence au fond, glissement à la surface
 Time: 0.0
 Re=750
 z=1.5

Cas 1: fond et surface rigide ($Re_D = 4460$)

- Comportement périodique du système de vortex
 - Apparition
 - Fusion

Cyclicité des structures cohérentes

Cas 1: fond et surface rigide ($Re_D = 46000$)

- Ligne de courant en aval du cylindre
 - Jet ascendant
 - Point nodal

Plan transversal YZ

Cas 3: fond érodable et surface rigide

Bed	Loose sand
Water depth, h	0.4 m
Cylinder diameter, D	0.1 m
Boundary layer thickness, δ	0.2 m
Mean flow velocity, U	0.46 m/s
Reynolds number, Re _D	46,000
Froude number, F _r	0.23
Sediment density, ρ_s	2,600 kg/m ³
Fluid density, ρ	1,000 kg/m ³
Grain size, d	0.26 mm
Sand roughness due to skin friction, k _s	0.65 mm

Roulund et al., JFM, 2005

Cas 3: fond érodable et surface rigide

Time(s)

D. Pham Van Bang – Modélisation numérique diphasique – Journée de restitution ANR SSHEAR, 11/09/2019

Cas 3: fond érodable et surface rigide

- Evolution temporelle
 - $\text{Re}_{\text{D}} = 46000$
 - UVFM-LES
 - Sand slide model
 - Live-bed conditions

Zb

Zb

D. Pham Van Bang – Modélisation numérique diphasique – Journée de restitution ANR SSHEAR, 11/09/2019

Cas 3 et 4: fond érodable et surface rigide/libre

- Surface rigide tend à surestimer la contrainte de frottement sur le fond, donc l'affouillement
 - En accord avec les récentes expériences
 Namaee et Sui., IJSR, 2019

Iso_vorticité Zhang et al., IJSR, 2019 (accepted) 20

Résumé - conclusions

- Développement du modèle NSMP-3D
 - 3D, Finite volume, maillage non structuré, Surface libre
 - 2^{ème} ordre en espace et en temps, DNS et LES pour la turbulence
 - Massivement parallèle
- Validation sur de nombreux problèmes physiques
 - Transition 2D et 3D
 - Turbulence
 - Vorticité, séparation et ré-attachement
 - Sillages (laminaire et turbulent) et ondulations de surface libre (vagues)
 - Jets descendant et ascendant
- Application sur les affouillements
 - Surface et fond rigides
 - Surface libre et fond rigide
 - Surface rigide et fond érodable
 - Surface libre et fond érodable

Résumé - conclusions

- Effet de la surface libre
 - Réduction de la contrainte sur le fond
 - réduction de l'affouillement
 - En accord avec données récentes
- Structures cohérentes
 - Amont
 - Formation du vortex fer à cheval
 - apparition disparition périodique de vortex
 - jet descendant impactant le lit avec un point de stagnation
 - Aval
 - jet ascendant aspirant le lit avec un point nodal
 - déposition sur la ligne de points nodaux explique la formation de dune ou la séparation des oreilles de lapin
 - bout d'oreille induit une vorticité qui n'existe pas dans le cas d'un lit rigide

Perspectives

• Affouillement au pied d'un mur vertical de protection côtière

- Simulation numérique

SSHEAR SOILS, STRUCTURES & HYDRAULICS Expertise and Applied Research

École des Ponts ParisTech

Journée publique de restitution Mercredi 11 Septembre 2019, Marne-la-Vallée

Merci de votre attention.

ANNEXES

- Titre 1
 - Titre 2
 - Titre 3
 - Titre 4

Cas 2: fond rigide et surface libre

- Surface rigide tend à surestimer la contrainte de frottement sur le fond, donc l'affouillement
 - En accord avec les récentes expériences
 Namaee et Sui., IJSR, 2019