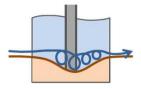
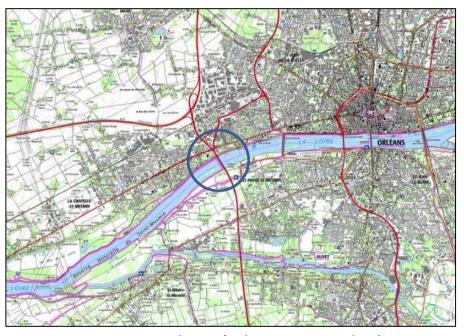


Journée publique de restitution Mercredi 11 Septembre 2019, Marne-la-Vallée

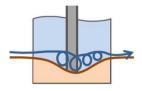
Monitoring complet d'un ouvrage : Viaduc de l'A71 sur la Loire

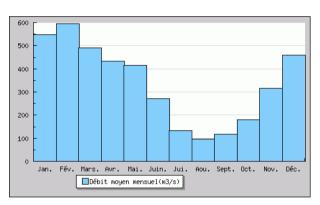
Arnaud Bontemps, Cerema Normandie-Centre





Contexte hydraulique et morphodynamique

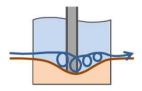

Localisation



- Lit endigué de 300 m de large
- Lit majeur d'environ 650 m de large en rive gauche

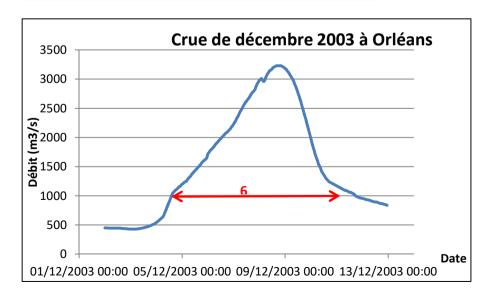
Contexte hydraulique et morphodynamique

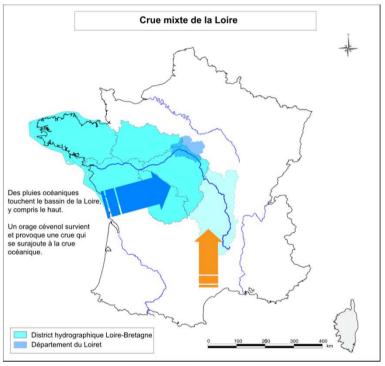
- Hydrologie
- Surface bassin versant à Orléans : 36 970 km²
- Station hydrométrique de Orléans [Pont Royal] (1964 -2019)
 - Débit moyen mensuel compris entre 37 et 595 m³/s
 - Module = $336 \, \text{m}^3/\text{s}$


Quantiles de crue (source Banque hydro)

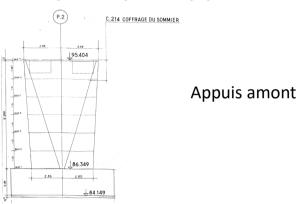
Cinquantennale	3560.000	[3170.000 ; 4270.000]
Vicennale	3070.000	[2760.000 ; 3620.000]
Décennale	2680.000	[2440.000 ; 3120.000]
Quinquennale	2290.000	[2100.000 ; 2600.000]
Biennale	1680.000	[1550.000 ; 1850.000]

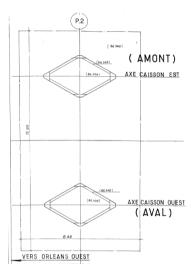
Quantiles QMNA (source Banque hydro)

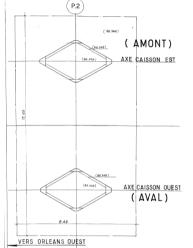

Biennale	69.400	[61.900 ; 77.800]
Quinquennale	49.600	[42.900 ; 55.900]
Décennale	41.500	[34.900 ; 47.500]
Vicennale	36.100	[29.500 ; 41.800]
Cinquantennale	30.500	[24.200 ; 36.200]


Contexte hydraulique et morphodynamique

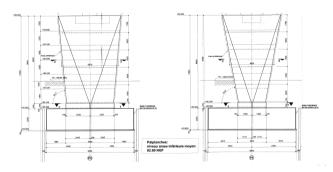
• Hydrologie - crues

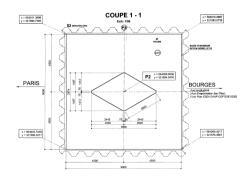

Crue	Débit de pointe à Orléans (en m³/s)
Octobre 1846	7 100
Juin 1856	7 200
Octobre 1866	7 200
Octobre 1907	4 050
Décembre 2003	3 230

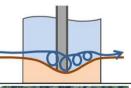




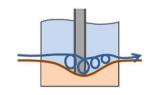
L'ouvrage

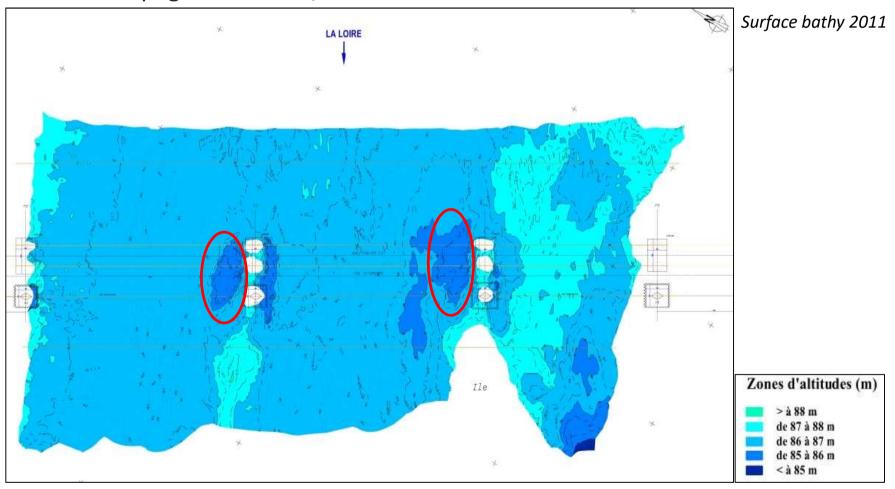

- Viaduc de 400 m de long
- 4 appuis en lit mineur
- 3 piles par appui

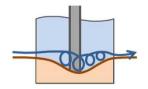


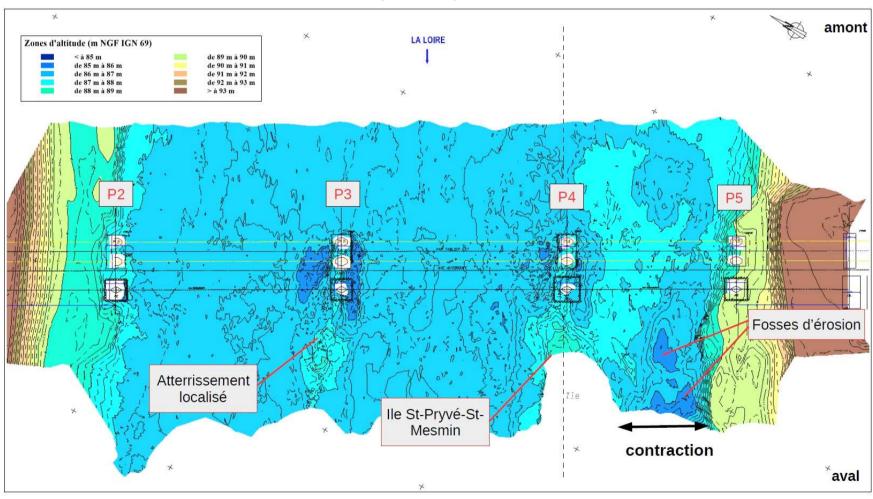


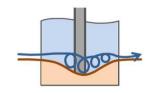
Appuis aval






Suivi bathymétrique


- Ouvrage suivi par le Cerema depuis 1987
 - Campagnes en 2004, 2011 et 2016


Suivi bathymétrique

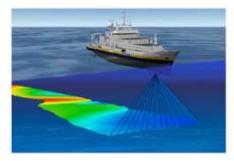
Surface bathy 2016

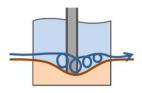
Suivi bathymétrique

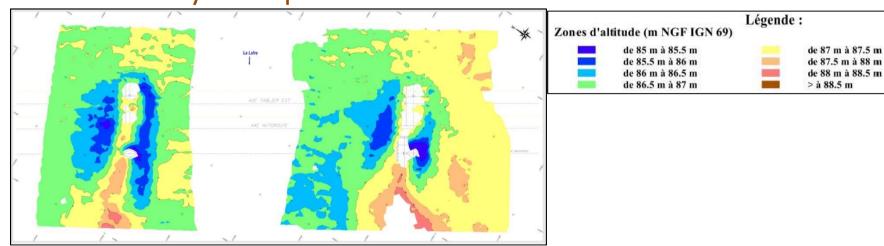
3 campagnes de mesures pendant la durée du projet

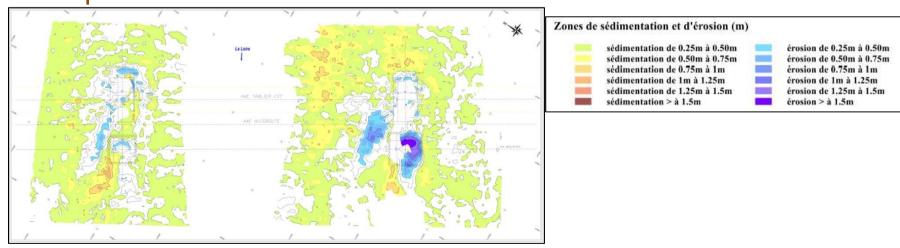
Campagne	Débit de la Loire (station de Orléans [Pont Royal])
5 & 6 avril 2016	363 - 377 m³/s
11 janvier 2018	1300 - 1100 m³/s
29 mai et 26 juin 2019	94 & 76 m³/s

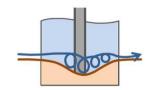
- Bathymétrie

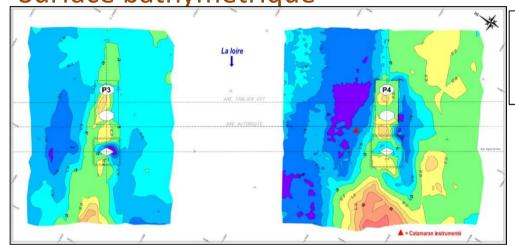

Autour des piles 3 et 4


- Sondeur multifaisceaux (ODOM ES3) + centrale inertielle
- Positionnement en temps réel avec antenne GNSS




Les résultats – campagne 2018


Surface bathymétrique


Comparaison 2016 - 2018

Les résultats – campagne 2019

Surface bathymétrique

Zones d'altitude (m NGF IGN 69):

< à 86 m

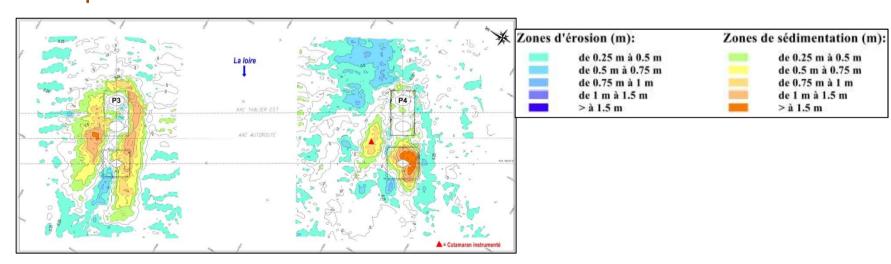
de 86 m à 86.25 m

de 87.25 m à 87.5 m

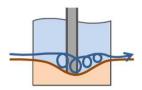
de 86.25 m à 86.5 m

de 86.5 m à 86.75 m

de 86.5 m à 86.75 m


de 87.75 m à 88 m

de 86.75 m à 87 m


de 87 m à 87.25 m

de 87 m à 87.25 m

Comparaison 2018 - 2019

Mesures en continu – choix des capteurs

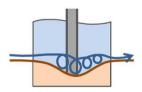
Exigences techniques

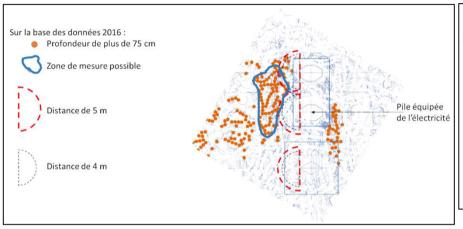
Fonction	Plage de mesures	Type de capteur
Vitesse d'écoulement	0,5 – 3 m/s	Courantomètre doppler 3D (ADCP)
Bathymétrie	0,3 – 4 m	Sonar
Niveau d'eau	0 – 15 m (distance du pont à la surface)	Radar

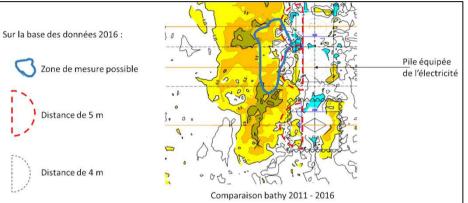
Sonar Kongsberg

Capteurs retenus

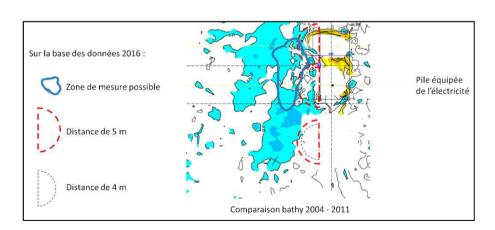
Fonction	Capteur retenu (marque- nom)	Spécifications techniques
Vitesse d'écoulement	ADCP RDI Monitor	Fréquence : 1200 kHz Gamme profondeur : 0,6 – 150 m Nombre de cellules verticales 1 – 25 Résolution = 0,1 m/s Précision : +/-0,3 cm/s Gamme vitesses : +5m/s
Bathymétrie	Kongsberg Dual Axis Sonar	Fréquence: 330 kHz Gamme profondeur: 0,2 – 300 m Résolution: > 1 mm Couverture angulaire verticale: +10° à 90° Couverture angulaire horizontale: 360°
Niveau d'eau	Radar Valeport VRS20	Distance: 1,5 – 20 m Précision: +/- 10 mm

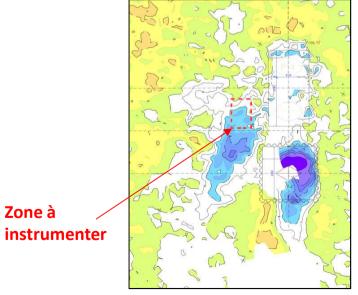


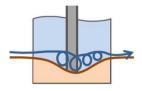

ADCP RDI Monitor



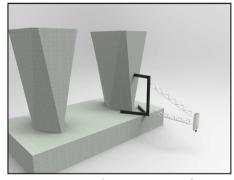
Valeport VRS20

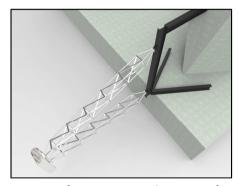

Mesures en continu – choix de la position à instrumenter

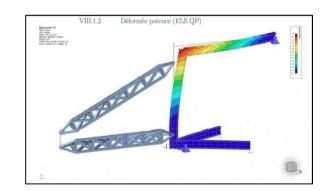



Zone à

Comparaison bathy 2016 - 2018

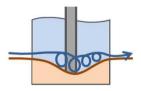

Mesures en continu – choix du support



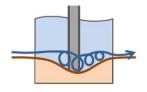

Contraintes techniques

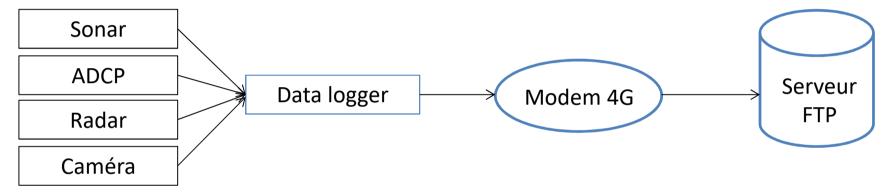
- Système peu intrusif, positionné à au moins 0,75 1 m au dessus du fond
- Sonar et ADCP doivent être en permanence dans l'eau
- Position fixe en plan pour comparer les mesures
- Limiter le risque d'endommagement par les encombres

Solutions étudiées

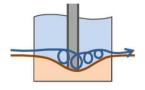


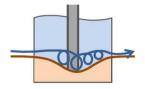
- Solution très coûteuse (env. 50 k€ HT)
- Dispositif intrusif


Mesures en continu – choix du support


Choix d'une solution plus simple → Catamaran

Mesures en continu


- Installation complétée par une caméra de surveillance
- Transmission des données


Fréquences d'acquisition

Capteur	Fréquence d'acquisition	Autre paramétrage
Sonar	1 mesure toutes les 30 min (10 min)	Ouverture angle vertical 60°
ADCP	1 mesure toutes les 30 min	255 cellules
Radar	1 mesure toutes les 5 min	Valeur moyennée sur 1 min
Caméra	2 photos par jour à 9h et 16h	

Mesures en continu

- Installation réalisée au printemps 2019
- Problèmes de vandalisme et problèmes techniques (radar, Data Logger)
- Démarrage des mesures en septembre 2019

Merci

Pour en savoir plus : arnaud.bontemps@cerema.fr